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CONVEX DUALITY APPROACH
TO THE OPTIMAL CONTROL OF DIFFUSIONS

WENDELL H. FLE.MINGt AND DoMoKos VERMEStT

1. INTRODUCTION

We consider R"-valued diffusion processes governed by the stochastic differential eqlui-
tion

dx, = b(sx., u,)ds + o(s, xs,u,)dw,, xt = X (1.1

with u?, an R"-valued Brownian motion and u, a non-anticipative Y CC Rn-valued control
process. The objective is to minimize the expected (possibly discounted) cost

J"(tfx) := E j e-c(s,° u')l(s, x,u,) ds (1.2)

over all control processes u. Here T is a finite or infinite planning horizon. Additional
terminal costs could also be included.

An important feature of the present paper is that we do not make any ellipticity assump-
tion, the matrix a can be degenerate or even identically zero. This means the approach
covers both deterministic and stochastic control theory.

Another specialty is that the running cost (and terminal cost if present) is not required
to be bounded or continuous, merely lower semi-continuous and of polynomial growth.
This makes it possible, among other things to include also problems where the objective
is e.g. to minimize the probability of the event that the state ever leaves a closed subset
of the state space or to maximize the hitting probability of a target set; and in particular
to cover the fixed end-point problem of deterministic control theory.

In distinction from most papers in the field, the present approach does not use dynamic
programming but is based on duality of convex analysis. We embed our control problem
into a convex mathematical programming problem on a space of measures and consider
its dual which turns out to involve the Hamilton-Jacobi-Bellman (HJB) equation. More
precisely we find that the dual of the original minimization problem is to seek the supremum
of all smooth subsolutions of the Hamilton-Jacobi-Bellman equation. From the existence
of an equilibrium point for the primal-dual game it then follows, in particular, that the
optimal value function is the upper envelope of the smooth subsolutions of the Hamilton-
Jacobi-Bellman equation.

*This research was supported in part by the Institute for Mathematics and its Applications with fuild-

provided by the NSF and Office of Naval Research.

t Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. Partially sup-
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under contracts F-49620-86-C-0111 and AFOSR-85-0315.
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University of Szeged.) This research was launched while the second author visited the Lefschetz Cent(,
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The proof consists of two major steps. First we construct the minimization problem
on the space of measures which contains the original control problem embedded ( 31 ail(
apply the Fenchel-Rockafellar duality theorem [4] to arrive at the HJB equation k,,4). i,
the second step we prove that the embedding is actually tight; the infimum is the s8::,
both in the original and in the extended problem (§§5-6). This second part of the proof
is based on the separation theorem and uses some analytic tools like mollification and
Sobolev estimates, which in turn are derived by control-theoretic arguments. Roughly one
could say that the separation is carried out by a sufficiently smooth control problem.

The usefulness of the duality theorem in control theory was first demonstrated by Vinter
and Lewis [6], [7] who proved similar results for deterministic control problems. Theii
approach was made available for stochastic control problems in [5] by basing it oil tlc
theory of occupation (potential and harmonic) measures and infinitesimal operators. The
present paper extends the method to the optimal control of diffusions. Since the diffusion
matrix is allowed to degenerate, the presented results apply uniformly to both deterministiC
and stochastic control problems. The novel proof of the tightness of the embedding is not
only more general but even in the classical deterministic case it is more direct than the
arguments of [6].

In [3] Lions characterizes the optimal value function of stochastic control as the largest
generalized subsolution of the Hamilton-Jacobi-Bellman equation. The approach and
method of proof differs from the one followed here.

2. FORMULATION OF THE PROBLEM

Let T be the planning horizon, either a non-negative number or +0C. We take 0 <
t < T. If T < oc then the state space will be E' :- [0, T] x R" and if T = +oo then
E := [0, T) x R". We denote by E the one-point compactification of E' and introduce
the notation S' E' x Y and S := E x Y'. Note that E and S are compact.

The coefficients a(t,x, y) and b(t,x,y) as well as the discount rate c(t, x,y) > 0 are
assumed to be bounded continuous functions on S' such that their first partial derivatives
with respect to i and second partial derivatives with respect to x exist and, together with
the functions themselves can continuously be extended to S. The running cost I is assumed
to be lower semi-continuous on S and of at most polynomial growth. The case of additional
terminal costs will be considered in §8.

For simplicity we assume that either the planning horizon T is finite or that there is
a strict discounting. i.e. CO = infESO c(U) > 0. The effect of the discounting wvill be
included into the process as an exponential killing or a jump to the fictitious isolated
cemetery state A at the killing time E). In what followvs all expectation signs E will refer
to the killed process. The only exception is the sans serif E in formula (1.2) which denotes
the expectation of the non-killed process, i.e.

E-4(x,) =ED(x,) - (>}= El (x,) j ec(8,#,t1) ds.

We will also use the notation -r :=min(E). T) and refer to it as the life-timie of the
processes. The cost JP can then be expressed in the three equivalent forms

2



=E'Z j (s, x,,) ds = Eu /l(s, x, u) ds. (.

t i

The assumptions about the boundedness of the coefficients, growth of the costs, and
boundedness of the expected life-time can be substantially relaxed. In fact, the proofs u,(,

a much less stringent but also less explicit assumption; c.f. the remark following Lenlm
2.1.

The spaces of functions on So and E0 which are continuously extendable to S and E
will be denoted by C(S) and C(E) respectively and they are considered to be Banal:.
spaces normced b),, the supremurn norm. In Lemma 2.1 we will introduce a contininoiim.
positive weight function -y : [0, T) x R--+ (0, oo) associated with the control problem
under investigation. We will consider the weighted spaces

{(f E C(S): f/I E C(S), 11f 11, sup ) f(dY)I-( )<
tEE,IIEY

and lim If ( ,Y) I/h'(0= 0},

C ( E) is defined analogously.

I (E) := E C., (E) : 41 (T, x)/1y(T, x) = 014 ,,,~ j )zjz E C-, (E) V i, j =1..,

In the subsequent expositions C' can always be substituted by the set of all infinitely
often differentiable functions satisfying the boundary condition (T, x)oY(Tx) = 0 and
with all derivatives in C(E). We will refer to the elements of C' as smooth functions.

M(S) will denote the space of all signed Borel measures M on So for which the norm
wil= f -de1+ + f) dM is finite. Here ly and M- are the positive and negative
parts of the Jordan decomposition of M. With obvious identification elements of Mi(S)
can be considered as signed measures on S not assigning mass to fool X 1'.

if r is a positive constant then i.r(S) will denote those non-negative measures from
M" (S) for which flElI)< r < +c.

The set U of all admissible controls consists of all Y-valued control processes u', which are
progressively inea'zurable withi respect to the filtration of the Brownian motion ul,. If u E U
then x'~ denotes the solution of the stochastic differential equation (1.1) corresponding to
u, satisfying the initial condition 4u = x and killed at rate c(.). The corresponding
expectation operator will be denoted by Eu, and if no confusion can arise the superscript
u will be omnitted from x' inside the expectation.

With each coitil u E 1 we associate the measure Al' defined on the compact space
S = E x Y which is the extension of

3



MU(Bj x B, x By) :=Et,zJ 1,T)nBIB(U)

M(oc x Y) =0.

Here B, C [0, o0], B, C R", By C Y are arbitrary Borel sets and 1B denotes the
indicator function of the set B. Note that though the notation does not indicate it. th.
measures Mu depend on the initial condition xt = x in (1.1) which is considered to be
fixed. We will denote the set of all such MU corresponding to some u E U by Ms(t, x).

Intuitively, M([t. t'] x B, x By) measures the expected time before t' spent by the killed
process x' in the set B. while control values from By C Y were supplied. In particulai.
M'(.,.,I Y) is the potential (or occupation) measure of the killed time-space process (s, x').5

The infinitesimal operator of the killed Markov process x,' corresponding to the constanIt
control ut - y E Y is defined for each 4) E C 2 (E ° ) and is given by the expression

Ay,((t, x) a ¢t~x + ait 2, O aixj+t~x , y) axt~z c(t,X, Y)(b(t, X)

at i,j=i i=1 ~ x

with (aj) = 1_,T . . We will use this notation also for non-smooth functions 4) i.e. to
denote the value of the expression on the right-hand side at every point (t, x) where the
corresponding partial derivatives exist.

To interconnect the assumptions on discounting, termination and growth as well as to
express them in a technically convenient analytic form we prove the following

LEMMA 2.1. There exist constants 0 < a < & and a twice continuously differentiable
function -y: [0. T) x R" --+ (0, oo) satisfying

0 < a-y < -A,-y _< &-y (2.2)

everywhere in (0, T) x R" for all y E Y.

PROOF: We will construct -f separately for the discounted and for the finite horizon case.
1.) Discoute(l case. The infinitesimal operator of the exponentially killed process is of

the form A) = D4 - cD with D a (possibly degenerate) second order differential operator.
We define

n

-y(t, x) := (cosh pt) J cosh px i (2.3)

with a p yet to be determined approximately.
A straightforward calculation shows that

-K(p) -)(t. x) <5 D-I (t, x) < K (p) -y(t. x) (2.4)

with K(p) = J:'= [kajIp' + F,"=- I[billp = ip' + bp. Consequently

4



-- ~~7 7.-.1 4(

A U I'p) + 1Ijel. < = D, ,- c < (K(p) - c). (2.35

If co = infc > 0 then the quadratic equation 71,2 + bp - co = 0 has exactly one positv,
root po. Choosing p from the interval (O,po) we get that co - K(p) > 0. hence (2.2) i,
satisfied with a := co - K(p) and 6 := 11ell + K(p).

2. Finite horizon case. We define

+,(t. x) := [1 + (T - t)]. f coshpx, = [1 + (T - t)1().
i=1

Using the notation A = 9O/&t + D,1 , a calculation analogous to that of the discountc-'
case yields

-A,(t,x) = o(x) -(l+T-t)D 1 o(x) >[(1 +T-1) - -K(p)] .(l+T-t).o(a). (2.6)

With (1 + T) - 1 in place of co, the above argument shows that if p is chosen from (0. Pu)
then -I. satisfies (2.2) with a := (1 + T)-' - K(p) > 0 and 6 := 1 + K(p). The proof of the
lemma is comipltc.

We formulate some consequences of Lemma 2.1 which will be used at various places
during the subsequent expositions.

COROLLARY.

(1) f dM" < , x )/o < +cc for evez.y Al' E AAS(t, x). In other words, the constant

P := -(t.x)/o < +- is a uniform upper bound for the expressions E,,,f _Ty(s. -.') d,; for
every process x'r generated by a control u E U and starting from initial state x =X.

(2) ;.(t.x ) - ws asymptotical1y not faster than an exponential function as jx! -- oc.

(3) For every (t,x) E E', O < s < +oo and u E U we have

1- e-" < 1- -(,)E.y(t + s,xt+,) < 1. (2.7)

PROOF:

(1) follows from Dynkin's formula. In fact, if T < oc we have
if 1

J d.V" < 1 (-]t--,) d 1 = -Eu, (-A')i;xu)ds

-- l--(t.x) - E,"x')(T, XT)] _< '(t,. )/Q.

Since the bound is independent of T. the inequality remains true as T -4 +oc.
(2) is immediate from the construction of -1 in the proof of Lemma 2.1.(3) The left-hand side of (2.2) can be writtcn a6 A' + a- _< 0. By the r"_nman - I Ktc

formula it follows that Eu e08sy(t + s,4+,) _ -,(t,x) with an 0 > 0. Subtracting both

5i



sides of inequality Er',-(t + s,x+ ) < e-" 3 )(t.x) from (tx) gives y -E, > ( - "
which proves the left-hand side of (2.7). The right-hand side is trivial since - E- _ 0.

Remark. The growth, discounting and termination conditions required earlier in t i-
section will be used in the subsequent expositions only indirectly through the statenient
of Lemma 2.1. Consequently all results of this paper remain valid under other scts o,

assumptions which assure the existence of a - with property (2.2). Examples of oth.:
possible sets of such assumptions are

(i) Coefficients aij. b, satisfy linear growth conditions, the discounting is strict, the run-
ning cost is bounded. In this case -y can be chosen asymptotically as IxI" with p < CI0 and

=Co-p.
(ii) Coefficients a,j,bi satisfy linear growth conditions, the time horizon is finite, the

running cost is of polynomial growth. Then one can choose -*(t,x) ,'- [1 + K(T - t)]IxI"
with an appropriit e K and p.

Now we return to our original control problem. Although we assumed I to be only lower
semi-continuous, in §§3-6 of the paper we will consider continuous running costs. Thi
extension of all obtained results to the general semi-continuous case will be an additional
step in §7. With the notation introduced the control problem we will consider is §§3-6 can
be formulate, as the

Strong Problem. For a given running cost I E C-(E) and initial state (t, x) E E0

minimize JI d.MU"  over all M' E MS (t,x)

We can deflne the optimal value V, of the strong problem as a function of the initial state

V ¢(t, x:=inf{ I Jll : M'EM(fx

3. THE WEAK FORMULATION OF THE CONTROL PROBLEM

It follows from Ito's formula, that for arbitrary non-anticipative control process u E 1i
the gencralization of the fundamental theorem of calculus (Dynkin's formula) holds true.
For every twice continuously differentiable 4, we have

'°
x - ,x) = Eu,] Au-(s, x, ) ds (3.1)

provided a < r is a stopping time such that the expectations exist.
If we apply this formula to the terminal time r and to smooth functions -4 E C"- which

vanish at the terminal state A then by x(r,r,-) = - (A) = 0 we find that

6



* . dx .d -(. , S,

-P(f. x) = A,(t',x')Mu(dt'. dx'. d ) (3.2.

hiu(i, truc for every zi C 1 whenever A4 E C1.
We introduce the notations

MA(tx) {M= 1 E MI(S) A-) =A1dM for all I E C'(E)}

and

M"(t,) :=M,'r(S) n.MA(t,X) with IF = -(t,x)/a.

Since for every u E M the measure Mu E MS(tx) is in both Mtr(S) and MA(t.X)
our original control problem. the "Strong Problem" is embedded in the following

Weak Problem Minimize f 1d over M E M"'(t,x) (3.3)

This is a minimization problem on the space of measures with linear objective and
convex coiistrai:nt. In fact if I E C.)(S) then by Riesz' theorem f 1dMI is a contiu,1on>
linear functional on the space of signed measures M'. For each 4 E C' relation (3.2)
imposes a continuous linear restriction on M, consequently their intersection M,1 (f. x) is
a closed linear set in M±'. Finally .M"'r is a w*-compact convex subset of M."

The feasible set of the strong problem consists of all M ' E .M5 generated by a control
u E U via the stochastic differential equation (1.1). This set is contained in the feasible set
M W of the weak problem, thus the optimal value 0'(t,x) := inf{f IdM": u E U} is not

less than the minimum %P(t,x) = if{fldI;M E M"(t,x)} in the weak problem. Note
that the initial state (t,x) is involied in the strong problem through the initial condition
(1.2) and in the wcvt: problem through the definition of MA(t, x).

In what follows, we will first characterize the value function %I(t, x) of the weak problem
by solving its dual, a maximization problem in the function space C.,(E) C C..(S). More
precisely it will turn out that the dual of the minimization problem (3.3) is to find the
supremum of all smooth subsolutions to the Hamilton-Jacobi equation.

To make duality methods applicable it is convenient to bring the weak problem to
the Fenchel normalform. Using extended valued functions we reformulate the convexly
constrained linear problem as an unconstrained convex problem. In fact, we introduce the

functionals hl and h2 i: M'(S) - R' by

f fI dM if l' E M-Ylr(S)

'1. +c0 otherwise

h2 (M) 0 if M E MA(f, x){ -oo otherwise.

Both lih and -112 arc convex and lower semi-continuous. It is immediate that the weak
problem is equivalent to the following

7



FenclM Problem Minimize 1i(Al) - h2(Ml over all .1 E M2..

4. DUALITY AND THE HAMILTON-JACOBI PROBLEM

Recall that the space S is compact, thus by Riesz" theorem C*(S) = Mi(S). In otlic,
words C,(S) and M" S) are spaces in duality connected by the bilinear form.

( fp = dp E C., P' E M~(4.1

The norm topology of C-, and the weak*- topology of M' are compatible with the pairing.
the continuous linear functionals on both spaces are exactly those representabl( by th(
bilinear form. If H and h are convex real-valued functions defined on C,(S) and M4'(S)
respectively then their Legendre-Fenchel transforms (convex conjugates) are defined by

H*(p) sup{J ddp - H(0) : E C,(S)} (4.2)

h*(O) sup{J dp - h(p) :11 E M'(S)}. (4.3)

If the original function 1i or H was convex and lower semi-continuous then it coincides
with its double conjugate, i.e. H** = H, h** = h. Conjugates of concave functions are
defined analogously but with inf in place of sup, and have the corresponding properties.

Now we compute the Legendre-Fenchel transforms of the functionals hI and h2 . We use
the quantities -,, and a as they were introduced in Lemma 2.1.

LEMMA (4.1). h*(O) = a-' • y(t,x). 11( - l)+11., = a- ' " "Y(t,x)

•sup{[6(cr) - l(u)]/y(9, ): over all a = (0, ,7) E S such that 0(a) - 1(a) _ 0}.t

PROOF:

hl*O) = sup{ Od - hi(p): p E M4 = sup{J(O~ - l)&VM: Ml E My

= sUpJ [(0 - I)/ ]' dM : AM' > 0, d. < f = r (t.)/o (4.4)
S.

Since 6 and I arc in C., the continuous function ( -/)/1 attains its maximum at some pioint
co = (toxo, yo) of the compact set S. If (0 -l)(to,xo,yo)/-y(to,xo) > 0 then to < oo, x0
oo and the sup in (3.4) can be attained by concentrating all available mass of the measure
SfdM to the point a0 E S. We have to choose M( ds) := -(t, x)/(a • -y(to. '0 ))6,0 (ds) with
30 denoting the Dirac measure assigning unit mass to the singleton {au }. Then we hav,

t(f)+ denotes the positive part of the function f, i.e. f+(x) = max{0, f(x)}

S,

y. c-.*X'~- ~ ~~ ~ -8



h*(c') 1(.r( )(aLG )/(a -I(to, zo)) = -~(.xf( (4.5

provided sup(o - 1) > 0.
If sup(o - 1) <5 0. i.e. if 5(a) < 1(a) for all 0" E S, then the maximum of the expressiol

(4.4) is zero a-. i- attained for ! - 0. This together with (4.5) proves the lemma.

LEMMA (4.2).

-lim4i(t. x) if = imi A , with 4), E C2(E).
h; (0 )  =-- ( ) (4.6)

-0 otherwise.

PROOF: Since l,2 is concave, h*(6) := inf{f d.A - h 2(M): Al E MA(t.X)}.

Let us first assume that € = A4 E Cy with some 4 E C'. Then, by the definition

of AMA(.x) for every M E MA(t,X) we have f dI = fA4dM = -4(t.x). Since

MA is non-empty..41 = At 2 implies ( 1 (t,X) = 1 2(t,x) and hence we have f pdM =

fAId = -d1 P .x) whenever € = A- E C-t with some I E _t.

Let us assume now that there exists a sequence 4
' E C2 such that 11p - A)kKi + 0.

This means that A4)k/' -* 0/), uniformly on S as k -* oo. By this uniform convergence
and the fnirtne~- of the measure ? df for every M E MA(t,-) C M± we have

f PdMJ. M A,' i -. dM= im A=dM lim1k(t,X)
=- O - -," dM= lira AA d

independently of the particular choice of the sequence A1k. Since - lim -k(t. x) does not
depend on Af' C A.(t. ,x). we have proved the first line of (4.6).

It remains to show that h2(O) = -o if 0 is not in the 11 11.- closure of the functions
A4) with 4, C C2. Assume d0 E C-Y is not in the closed subspace W4" := {d G C-.(S) :

lim- c.' - .,;-, = 0 with -V E C'}. Then 00 and W can be separated by a closed

hyperplane. I.e. there exists an M' E M' (S) such that f 4o df' < 0 while f dM' = 0
for all e E T. In particular we have f A4 dM' = 0 for all 4 E C' and consequently

A + MAI' E MA(t,x) for every M E MA (t,x) and E E R. If M denotes an arbitrary
fixed element of .k4 1 (t. x) then we have

h;60 inf I, 0 1 < inf 6~od(Ml-+ OM')
MEA A eER1

dA +inf E). Ofd~'-o
eER1

Here we used that by assumption f Oo dAl' 3 0 and that 0 can be arbitrary. This completes
the proof of the lemma.

The next theorem is the main result of this section. Roughly it states that seeking the
maximal solution of thc Hamilton-Jacobi- Bellman equation is the dual to the weak problem
formulated in the previous section. As under the current weak assumptions no smooth

9



solutions to the Hamilton-Jacobi-Bellman equation need exist, the precise formulatio,_ of
the duality relainship is the following. The value function (i.e. the minimium) of the
Weak problem is the upper envelope (i.e. supremum) of the smooth subsolutions of th,
Hami-ilton-Jacobi equaition.

THEOREM 1.

:=t X min{Jf 11M: MATE M A(t,x) n MIXr

=sup{-4)(t, X): -1PEC2 A-(D+I >O0).

PROOF: If applied to Cs = M", Rockafellar's duality theorem [41 states that

Milln I() - 112(AI1) : Al1 E M±'(SA} = SUP Ih~q h) E C-, (S)) (4.7)

whenever the se :~ h*(O) > -oc}) contains a finite continuity point of h,. But this con-
dition is satisfied since h* is continuous and finite on whole C., and h*(O) is not identically
-oc , and hence (4.7) holds true.

Substituting thle explicit expressions for ht1 and h* from Lemmas 4.1 and 4.2 Into(47
and using the fact that f{At : E C2] is dense in 10 h2(O) > -001 we obtain

T (t. x) = min{f1 (.A') - h 2 (AT) : -Al E M (S)}

= sup{IID(t, x') - a - y(t, _T) 11(AID + 1) 4) Z E C2}

To conclude the proof it is sufficient to show that for every 4) E C2 there exists a
D C2 such that A43- + I > 0 and 43-(t, x) ! 4(t, x) - a- y(t, x) - I(A43 +ljI.

Choose '1- a= - -$443 + 'rI).Then by Lemma 1.1 -As > aly holds andI
consequently, we have

A43 +±I= A43±I-a-' IIj(A43±l+)II~rA-' A43+lIi(A3+1f

- A4)' + + sup I (A,11 + 1) tx', y')-( x')I 0.

The proof of the theorem is complete.
In a less compressed form Theorem 1 states that the weak value function TI is the upper.

envelope of all 43 E C 2(E) satisfying the Hamilton-Jacobi inequality.

-t (t, x) + min{ Ej a (t, x'. y) 43 X r (f, a') + i (tx, Y)43(t, x')
yEV ij=1

- C(t.X. y)43(t, a) + l(t, X, Y)} >0.

10



Recall that the definition of C2 includes -i,(T, x) = 0 whenever T < +0C.
The fact that A4)] _> A 2 implies 4I, _ 42 justifies to call the functions 4? E C.-'

satisfying (4.8) subsolutions of the Hamilton-Jacobi equation.
The results of the present paragraph remain valid under much more general assumpt ions

than those made in §2. In fact, we did not use either the finite dimensionality of the
state-space or the specific properties of diffusion processes. Besides Rockafellar's duality
theorem, our approach was based on the validity of Dynkin's formula, but not even the
denseness of C2 was exploited. Since Dynkin's formula is a special case of the "general
fundamental theorem of calculus" in semigroup theory, all results of the present paragraph
can be generalized to the case, when the state and control spaces are locally compact
separable metric spaces and C' is substituted by a linear subset £ of C(E). Of course,
this latter change affects the definition of MA and consequently the weak problem itself.
But still, the dual of this new "Z-weak" problem will be the problem of finding the upper-
envelope of all subsolutions in £ of the Hamilton-Jacobi-Bellman equation involving tti
operator A. The coincidence of the primal and dual values remain preserved too.

5. EQUIVALENCE OF THE STRONG AND WEAK FORMULATIONS

We prove the equivalence under the assumption of a special approximation property of
the value function corresponding to smooth costs. In Section 6 we will show that under
the assumptions of the present paper this approximability is always true.

THEOREM 2. Let f E C'(S) denote an arbitrary smooth "running cost" and denote F
the corresponding (strong) value function.

Suppose that every such value function F can be approximated in the 11 1.-norm by
a sequence of functions F(e) each of which has first and second derivatives essentialh"-
bounded in I -norm and satisfies AFO ) + f > 0 a.e. as well as F(W)(T, x) = 0 whenever
T < oo. Then, for each (t, x) E El and I as in Section 2 the weak and strong formulations
are equivalent; their optimal value functions coincide.

Note that Theorem 2 assumes the approximability of value functions generated by
smooth costs and makes a statement about the more general control problem which in-
volves general continuous or (later) even only lower semicontinuous running cost 1.

PROOF: Assume that the statement of the theorem is false, there exists an initial state
(to.xo) such that Ii(to,x() < V(to,xo). This means that there exists a measure Mo E
,1"(to, .o)\M (t o, xo) which gives rise to a cost fI dMo lower than i'(t0, I0) the infinmum
over all costs generated by controls u E U, i.e.

] IdMo <inf{]ld21ul : U E U}. (5.1)

This means that the w*-continuous linear functional f dM on Mi(S) separates an
element 10 E ,M ' from the w*convex- closure of the set " S  {Mu : u E 14}. In other
words M ' is strictly larger than the closure of Ms. If this is so, then M0 and the compact

11
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sct . can als5o be separated by a functional f f dI generated by a smooth f E Ci'S).
More precisely, since smooth functions form a dense subset in C. there must exist an
f C C: such that

J f d.Mo < inf{Jf dAP: Mu E M). (3 .2

Let us introduce the strong value function F corresponding to the running cost f

F(t.r) := inf I f dMI : M E MS(t,x)= inf E,, f(t,x'.u1 )dt. (3.3)~uEl4:

Then, according to the assumptions of the theorem, for every > 0 there exists an
F' such that the partial derivatives ,, ,, j are all defined a.e.. are essentially
bounded and for every y E Y the inequality

AYF(e)(t, x) + f(t, x, y) _ 0 ( 554 )

is satisfied for a.e. (t,x) E E and IIF( ) - Frl-. < e.
The generalized Dynkin's formula (3.2) cannot directly be applied to (5.4) because F (')

is not smooth. it should first be approximated by C' functions. The details of this approx-
imation arc presented in the next two lemmas. Using them, the conclusion of the proof of
Theorem 2 will be straightforward.

LEMMA 5.1. Foi- every 6 > 0 there exists an F(',6 ) E C2(E) such that

IIAF(c,6 II < IIAF(II, + 6,
aid AF ( ' ) + f  -6 .  on [,T-6] xR " xYI. (5.5)

PROOF: First we ex ;end the definition of F (") from [0, TJ x R" to [-T, 2T] x R" by

F(E)(- s, x) : F(')(,x) s E [0, T],-a' E R"

F")(T + s, x) F()(T - s, x) (5.0)

and the functions a. b. c, and f from [0, T] x R" x Y to [-T., 2T] x R " x I by reflectio>n
over 0 and T: i.e. a(-s, x.,y) = a(s,x,y) and a(T + s, x,y) = a(T- sx,y) if s E [0.T],x E
R",y E Y, and similarly for b,c and f.

Note that

A YF )(-s,,x) = - F,) (sx) + AYF( )(s,x) S E0,T],x c R", E Y

4"1F(c>T .,r) = 2F/)(s,. x) - AYF(-)(T - s, x). (5.7)

12



Moreover. because of the Lipschitz continuity of F ( ' ) we have

Sul) JAF(')/ = K
[-T,2T]xR'- xY

with some finitc number K. (WNre reserve the notation I1 for sup over [0,T] x R- x Y.)

Let pr(t, x) be a non-negative symmetric C'-mollifier (partition of unity) with
f f pr(a, )dad, = 1 and pr(a,{) = 0 if ao + JCJ > r. If € E C((-T, 2T] x R") we dcfiiic

P * Pr on [0, T] X R" by

(6 * pr)(tX) = 0(t +ax + , )pr(a,C)dadi if 0< r < T.

From the second relation of (5.6) it follows that (F()*pr)(T, x) = 0, moreover F(') p, is

infinitely often differcntiable on [0, T] x R" and IIF(e) *PrI- -< K. Consequently F , ,
C2(E) for every 0 < r < T.

Since by (5.4) AP") + f > 0 holds almost everywhere on [0, T] x R' x Y, it follows that

(-4F(')) * p, +f *p, -L-0 on [r, T -r] x R' x Y

We want to show that for every b > 0 there exists an r > 0 such that F(" '6 ) := F (') * Pr

satisfies (5.5). Cicaily, we cat assume r < 6, i.e. [6, T - 6] C [r,T - r] and thus it is
sufficient to show that

I(AF(c)) * Pr - A(F(c) * Pr)lly -+ 0 and Ilf * Pr - f11-Y --+ 0.

We have

[(AF() * Pr - A(F() * Pr)](t, X, y)

1 /{(t1(, tx)x {

"(x) , [a ij(t + ar,x + ,y) -aii(t, x, y] Fj (t 0'

:,j= 1

n
+ E [b1 (t + a,x + , y) - bi(t, x, y)] F,(,)(t + a, x + )

4.i=

-[c(t + o,x + ,y) - c(t,x,y)]F(')(t + a,x + pr(a, )dadC

_< a,()l - ,,, I, + E bj(r)IlF .) l-, + (r)IIF(')11, (. S

where aij, b,. Z denote the moduli of continuity of the corresponding coefficients. Since the

coefficients were assumed to be uniformly continuous and the I1" -[. -norms of F (4,,. F

and F (') are finitc by the assumption of the theorem, the right-hand side of the inequality
tends to zero as r - 0, proving the lemma.

13



LEMMA 5.2.

f~tIt~jxR~Y - dM < (t 2 - t1 ) • ,(t, x) (3. .

holds true for every Ml E M "(t, x) and 0 < tj < t2 <_ T.

PROOF: Denote X(s) := (t 2 -tl )-fo 0[ 1 ,l(ojd° and let Xk : [0, T] - R' be a monotonely
decreasing sequence of functions which are continuously differentiable in (0, T), for whichi
xk(T) = 0 and such that Xk \ X and X, / l[t1,t2] = as k o.

For M E M1w(t, X) C MA(t, x), the generalized Dynkin's formula (3.2) can be applied
to the functions Ik(, := Xk(a)" "Y(, ). Using relation

AIk =-y . AXk + Xk. Al = YX - -c Xk + Xk.A

and the fact that c " , -Aj, and M are non-negative, we obtain

(t2 - > -(t, X) -y(t, x) -(t) lir Y(t, x) Xk(t)
k-00

-lim 1 Ik (t, X) liM [A41k dM
k-- o k-.oo f

-i k-.o -t dM +1 Xkc - y dA + JXk(-A') dMAk>.-ooJ-X' 'dM= f l,] . dM

proving the lemma.

CONCLUSION OF TIE PROOF OF THEOREM 2:
Since F ( ' *' C C'2(E) and Al0 E M"' C .4 A(t, X), we can apply the generalized Dynkin's

formula and obtain by (5.5) and (5.9)

XF'6 )U x) = - J AF (c"') dM0

< / f dMo + 6 -[ d.Ao
[,T-6] xR" xY ,T-6]xRn xY

+ IIAF( '6 jo r -y dMo.IIA (+ )I' 0,6jU[T-6,T]) xR." Xy

Since Mo E ""' C .4M1,r , we have 0 _< fsyd.y o < r. From Lemma 5.2 it follows that
the integral in the last term is not greater than 26. y(t, x) = 26- or r and since by Lemma
5.1 jJAF(r'6 )jj _< IIAF(e)j-y + 6, we have

F(")>(t,x) s f dAlo + 6.2(1 + ajjAF(L)Ij . F

14



Choosing first r then 6 sufficiently small, from JIF - F',611 _ E + 6 and relation (5.10) it
follows

F(t. x) = inf{Jfd.11 -Afu E Ms} If Jd,11

in contradiction to the choice (5.2) of f as separating functional. This proves the equiva-
lence of the strong and weak formulations.

Remark. Assumptions on the derivatives of P" ) were only needed to obtain estimate
(5.S). Note that since F ) is locally Lipschitzian, its first derivatives exist a.e. and are
locally bounded. This fact alone is sufficient to prove the equivalence of the strong an(!
weak problems provided the diffusion coefficients aij do not depend on t and x. In fact.
in this case the terms [ai(t + a,x + C,y) - ai(t,x,y)] are zero and no assumptions on
the second derivatives F,;, are needed, shortcutting the approximation by F(-) and tl,,
entire Section 6.

COROLLARY 1. Suppose that I is of at most linear growth, i.e. 1l(t, x, y)I _ ro + r I xI+ r'2t.
If the processes are deterministic (ai -, 0) or the diffusion coefficients are independent of
time and space, then the strong and weak problems are equivalent.

PROOF: If I is of linear growth, then -y can be chosen to be T. (1 + IxI + t) with T >
max(ro, r1 , r 2 ). Consequently f will be uniformly Lipschitzian and so will be F. Moreover
F can be represented as the sum of a concave and of a smooth function, hence the first
and second partial derivatives of F exist a.e. and the first partials are uniformly bounded.
The corollary thei follows from the previous remark.

The measure M 0 introduced in the proof of Theorem 2 could not be in the w* convex
closure of Ams(t 0 . x0 ). The argument there in fact proves:

COROLLARY 2.M' W(t,.r) is the w* convex closure of Ms(tx).

G. A SOBOLEV APPROXIMATION OF THE VALUE FUNCTION

To complete the proof of the equivalence of the strong and weak problems it remains
to show that the value function generated by a smooth running cost can be approximated
by V 2 function the way required by the assumptions of Theorem 2. This kind of ap-
proximability of the value function which does not use any non-degeneracy assumptions
is also of independent interest in other branches of control theory unrelated to the strong
and weak formulations. This section is devoted to the proof of the result.

THEOREM 3. Let f E C'(S) and let F be the corresponding value function defined by

(5.3). Then for every e > 0 there exists a function F(e) E C. (E) with the following
properties

(a) IIF - F(")h, < s:(b) The partial derivatives F[ , (() F(f)-ev
( , I , exist almost everywhere for eiery 1 < i. j <

n and satisfying IIIFW I IIy < K(e) with some constant K(c) where

15
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I!F f ili-, + lite'l +E l i1 1 jj, + E j 'Ijl.~~
i=1 i=1

(c) A F(')(t.x)+f(t.x) > 0 for almost every (t,x) E E, for every y, and F(')(T,sx) =

whenever T < c.

We denote the weighted Sobolev space of all functions satisfying (b) by W4'1.

The idea of the proof is to extend the control set of the original problem by one additional
"smoothing control" giving rise to an n-dimensional Brownian motion. The value function
of the extended problem will then have the required smoothness properties and by charging
a sufficiently high penalty for the "smoothing" its domain of application can be kept small
and this way the smoothed value function can be forced to remain close to the original
one.

To be more precise, let us introduce one more additional control 77 so that the extended
control set will be I U{ 7 }. The process associated with 77 will be the standard n-dimensional
Brownian motion discounted at the lowest possible rate co = inf c(t, x, y) so that we
have

1 1 (2irs)'?/ 2 J S ) x 2s d )

The infinitesimal operator corresponding to the exponentially killed Brownian motion is

2

where A denotes the Laplacian. Recall that in Lemma 2.1 inequality (2.2) holds not only
for the family of operators {A91}Ey but with possibly different numbers a and a also for
the extended family {A}YEyu{7}. In particular we have 0 < a- : --A'?-.

During the period of time when the new control 27 is applied we charge the running cost

f(s,x, 7) := L. (-A"-y)(s, x) = L. (coy(s,x) - IAY(s,x))

with some constant L to be determined later. For simplicity we only allow 27 to be applied
during at most one non-random interval of time. In other words, the extended set 1,7 of
admissible controls will be the set of all functions of the form

v(W, S 7 ift 5 S<t 2

u(w, s) otherwise

with all possible choices of 0 < tj < t 2 :< T and u E U. Note that because of the possibility
of killing, the processes may die before t1 or t2 .

The value function of the extended problem can then be written as

16
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T

F'a(t-x) -,inf EZ [/ f(s,XV,vS)ly(r,) +L.(-A'h)(.s, 8 )l{,}(c.,)2 (.
vEU,, t' it

= inf Eu {J ' 'Sd
f<t<t2 <T f(s,x,u 8 )ds

+E71 1  [1: L -(-A%-)(s, x7) ds + t24

_< inf _Etf f (s,xu, u,) ds + ( tl, * F) (ti, XUt,
t<t <t2<T Iat

- u- --

+ L.- (-y - #,_ •-y) (ti, xl,)}.(.

Now we show that setting the penalty L high will keep the optimal cost FL close to F.

PROPOSITION 6.1. For every E > 0 there exists an 0 < L, < oc such that 11F- FL, IK- -.

PROOF: FL < F is trivial since 4L is the value functional of the extended control problem
which contains the original problem embedded, as t2 = tl is permitted.

To show F - FL. < - - observe that since F/h is bounded and uniformly continuous
there exists a t, such the IIF/-y - Ph * (F/y-)ll < e/2 for all 0 < h < t,. "With this t, let
us choose L, := 311fL./(a . t,). Now let us consider an arbitrary (t, x) E E. Since FL. is
the pointwise infirnum in (6.1), we can find an e/2-optimal triple u, 0 < t < t 2 i.e. such
that

F(tx) f(:E (r,) + (3h * F)(,)+L,.E0, (-A+) (Lw

< FL (t,X) + . X(ta)

We use the notation 6 and h =-2 -11. Keep in mind that although ii,Tt2
do depend on (t, x). the numbers t, and L, were chosen before (t, x) was picked, hence
estimates involving only t, and L, will hold for every (t, x) E E.

With the quantities just defined we can write

F(t. x) - FLe (t., )= [F(t; x) - F(t, x)] + [T(t. x) - FL. (t. X)]

_ [F(t, z) - F(t, x)] + y(t,x) • (6.2)

and it remains to show that F(t. x) - F(t, x) ! tx) • 1
We increase the value if we fix D1 for the initial interval [t,1 1 ) and allow minimization

only after t.
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F( t. x) -(t. ) ',,, f(s.x .,) ds + F zU1) X - F(t. X)

Etf., ,  [F- 8, * F] - Lf * [I - 13h 7] (G-, ). 031. .,

The expression in the first bracket under the expectation sign normalized by y can be
estimated at an arbitrary (tl,xl) E E as

1(t'. I [F(t',x') - (O * F)(t',x')] = - 3* (t',x') ± .

F - -,, + JIIFI.-' -(1_1h_')
- W ( X')

Consequently if we divide the whole expression under the expectation in (6.3) by - we
obtain for it

1
X , ': X (, ) ([F - Oh * F] - L,. Ph- X ]('

<F -Oh F - -(, -IIFII-,) 1 - A.(tX (6.4)
- y y v(t , ')

Now there -rc- two possibilities: either h < t, or h > t,. If h < t, then by the definition
of t, we have ['/1,. - h * (F/)jj < e/2. Since L, > I1fliK/a > IFik and - > O3h * -,

the last term is non-negative; we may subtract it and we get X(t', x') _< e/2 for arbitrary
(t', x') E E.

On the other hand if h > t , then 1 - e- ch > 1 - eat, . thus by Corollary 3 to Lemma
2.1 and the choice of L, we have

(4, * Fh(t',)) 211f 11- eQh) > 211f j > 21JIIFJ"" ~(t -I ( -e-c".)- -

Since both F/i2 and ' * (F/-y) are bounded by II.i,, from (6.4) we find that ,('..T') K
0 < c/2 for every (t'. x') E E.

Substituting this result back in (6.3) we find by Corollary 3 to Lemma 2.1 that

F(t. x) - T(t. x) _< E,.,-y(ti,-,,l). -X(t], ,, _ fE,, (ti,, ,) _ "( ':.

This together with (6.2) gives F-FL < e-y which completes the proof of the proposition.
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It is well-known (cf. e.g. [2], Th. 4.2) that under the conditions of Theorem 3 the value

function FL permits the decomposition FL ?L+-L where ?L C C, is smooth. its partiu

derivatives FL. F ,,, FL, belong to C-, while FL E C., is concave in x and monotol in t.
In fact, for every control JU E C' and the infimum of continuously parameterized family of'

C2 functions has the above decomposition property. For such functions the generaliznti,ii

of Alexandrov's theorem [1] holds true; for almost every (t, x) the derivatives F L , FLY FI
exist and satisfy

+ + F., (t,x), + o(It + j2). FG

It is easy to see that FL satisfies the Hamilton-Jacobi-Bellman inequality of the extended
problem almost everywhere. In fact, the next proposition is only a slight modification of
known results (cf. [2]. [3]) which we prove here only because the easy proof makes our
exposition self-contained.

PROPOSITION 6.2. For every y E Y U {17}

AYFL(t.X) + f(t,x,y). ly(y) + L. (-AVy)(t,x)l{n}(y) _0 (6.6)

for almost every (t, x) E E.

PRoor: Suppose there exists a y C I'D and a (to, xo) E E from the non-exceptional set
such that

A'Y°FL (to,xo) + f(to,Xo,yo) _ -8<0.

Then. by the continuity of the underlying processes, there exists an so > 0 such that for
all s < SO

s-1 [EyooFL(to + sX) - F(to,xo)j + f(to, Xo,yo) < -8/2 < 0.

Let uC E U,, be a 8/3-optimal control for the initial state (to + so, ) and define

° YO ifto -- t < to+s

U6 if t > to + s and xt,+,,(w)= .

Then this control is again in U,, and will yield the cost

E 0 j f(s,,,Uo(s)) ds < f (to, xo.,yo) so + E,of{FL (tot S1 ,xt0 + 0 ) + 8/3}

< F(to,xo) - /6 < 0

in contradiction to the definition of FL as the infimum over all u E Ur.. The proof for
yo = 7 is the same.
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CONCLUSION 01 TH1E PRoor OF THEOREM 3:
Let us choose F) := FLe according to Proposition 6.1. Then we have iF - F, <

The derivatives F!), F ( E). exist almost everywhere by Alexandrov's thconcin and,

Proposition 6.2 shows that the Hamilton-Jacobi inequality holds true for every Y E Y an ,
for ahnost every (0. x) E E. The smooth component P (') and its derivatives are in C-; I)Y
Krylov's cited result (121, Th. 4.2).

It remains to show that the derivatives of the concave component PE) are essenti:,llv
bounded by K(E)

Consider the first derivative in an arbitrary direction of the (t, x)-space. By the coil-

cavity of F5) this directional derivative is monotone along each line parallel to the choseni
direction. Suppose that this (one-dimensional) derivative function exceeds K .K for every
K. Then by its monotonicity follows that neither can its integral function be bounded by
K• - But this contradicts Fko E C, which follows from Proposition 6.1. Hence there

must be a K2(e) such that JFt')(t, x)I+E__l lF.'j)(t, x)l -K 2 (e)-y(t, x) almost everywhere.

As for the second derivatives, Fx(ZJ (t, X) < K3(E) follows from the concavity of F (e. To
show ( F2 cil < K(e) -y consider inequality (6.6) of Proposition 6.2 for y =q This claims
that

F{*) + 1AF(r) - co F (e) > L,, •A y > LA
2

where the last inequality follows from the right-hand side of (2.2). Using the estimates
already obtained for F (e) F () we get

AY(e)(t. a') > -2(c11F() 1., + 11Ft') 11. + jj kzjzj 11 ± L-r) -'(t, +X)
=j=

=1 -A(E)-(t, X).

This lower bound f-r the sum . t/ together with the upper bound for the individual
summands F Z, obtained from the concavity of F() implies lF,(e?2. 1 X fe,,F,' I- -K(e) for every !
1 < i, j < r7. This completes the proof of Theorem 3.

7. SEMI-CONTINUOUS COSTS

In the previous paragraphs, in particular in §3 and §4, we assumed the running cost to
be continuous I e C.. Now we are going to remove this assumption and allow I to be lower
semi-continuous and of growth less than y. More precisely we denote by LC.. the set of all
functions I satisfying

(i) I is lower semi-continuous
(ii) sup(4,Y)E.S 14, Y)1/7( ) < 00

(iii) lim sup 1 ,l_(- , Y)/Y() = 0.
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Such functions can be represented as upper envelopes of continuous functions I = sup{f
.f E C-, f < l} or even as limits of non-decreasing sequences of C- functions.

The aim of the present paragraph is to show that all results proved for continuous /
in the preceding paragraphs remain true for control problems with lower semi-contii.:,,.-
cost functions I E LC-,. The key tool in approximating lower semi-continuous cost -
continuous ones will be the following min-max type argument.

PROPOSITION 7.1. Suppose 1 E LC., and let K denote an arbitrary u'*-compact sibset c,
AM.i(S). Then

inf jIdy = inf sup fd = sup itif jfdv. (7..
pE EK. f<l,fEC, f<L,fEC, u

PROOF: Note first, that every I E LCI defines a convex, lower w*-semi-continuous funr,-
tional on .%4=. hence all infima in (7.1) are attained for sonic elements of the wz-comp,,:
set K.

The monotone convergence theorem and the obvious inequality inf sup _> sup inf yield

Io := inf [Idp = inf sup f dp > sup inf f dp.
pEA M EK <1J EC, J f<IfEC, pEk

Let if denote the measure, for which ffd pf = infuEK ff dp. To prove the proposition
it is sufficient to show the existence of a u* E A: for which

sup Jf duf > I Jdu- (7.2)

holds true.
Let fk denote a monotone non-decreasing sequence of continuous functions with fA E

C.(S) and fk / I as A- - . Since A: is sequentially compact, one can select a subsequence
ki such that pi := p i converge weakly* to a limit p* E K as i -. 0c.

Let us consider the following array of reals

I(i,j) := fk, d , i,j = 1.2....

If i' < i then I(i',j) :_ I(ij) because the sequence fk, is monotone non-decreasing. The
measure pi is by definition minimizing f f,, dp and as fki < 1, we have

I(i i) = f , dd = inf f dp :< inf ldv=Io. .

Consequently all elements I(i,j) with i < j (i.e. above the diagonal) are uniformly bounded
by I0. From the monotonicity of the sequence fk it follows that the diagonal sequence
I(i, i) is monotone non-decreasing and so I,. := limi,, 1(i. i) < 10 exists.

Since .fk, is continuous and p* = uw-limj li, it follows that the sequence I(i,j) coiverges
for any fixed i to (a limit I(i. ) = ffA, d;i* as j -+ oc. From 1(i,j) :_ I(j,j) for i < j it

follows
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I(i.1c) = lim I(i,j) _ ir I(j.j) = Io.
j- c 3 o

Recall that the sequence fk was chosen such a way that fk / I. Consequently the monotone
convergence theorem yields

I(i, 0C)= fkidp* I dp <*Io : = 1, sup fdpif.
f! lfEC,

In other words p* satisfies (7.2) and the proof is complete.

THEOREM 4. Suppose I E LC.-. Then the (strong) value function of the stochastic con-
trol problem formulated in §§1-2 is the upper envelope of the smooth subsolutions of the
Haitoij-JdicoL-,-Bel!:nan equation, i.e.

(t, x) = sup{(t, x): - E C',A( + > 0. (7.3)

PROOF: It was shown in §§5-6 that M w is the closed convex hull of Ms. Since f I dM is
a convex, lower w*-semi-continuous functional on Al±' whenever I E LC, it follows that its
infimum over AAs is the same as its minimum attained in M"'. Consequently the strong
and weak value functions coincide even if I is only lower semi-continuous I E LCU.

We know from Theorem 1 that the value function permits representation (7.3) if I is
continuous (I E C- '). Proposition 7.1 can be applied to 1 E LC. and K = A41 as A11, is
a w*-compact set and we obtain

=,(t.X) inf [ dM = sup inf f dMAfM "~' (1, X) f ,IC M- I

= sup sup{(t,): (IE C2(E), A4± + f _ 0}
I : 1,f fEC ^t

:< sup{4(t, x): D E C2 ,A + > 01.

The opposite inequality is immediate, since for every (D E C2 with A4 + I > 0 and for

every Ml E 1 1' M l lA Dynkin's formula yields

ab(t' X) f J(- A4)) dM f J 1dM.

Taking infimum over M E A41V gives $(t,x) _ infMEMw f IdM = V,(tx) for every

4 E C2 with A4) + I > 0 which completes the proof of the Theorem.
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8. INCLUSION OF TERMINAL PENALTIES

In this final paragraph we explain how to extend the main results of the paper to
problems whcre the cost function includes also an additional terminal penalty, i.e. where
the objective is to minimize the functional

J(tx) = El(t, xt,mt)dt + L(XT) (T < co) (8.1)

over all controls v E U. Here both I and L are lower semi-continuous functions of growth
less than -) at infinity. This will extend the scope of the results to include problems like the p
maximization of the hitting probability of a closed target set or the fixed end-point problem
of deterministic control theory which were beyond the reaches of the other approaches to
the Hamilton-Jacobi theory.

The key to the extension is to consider a more elaborate state space S which is composed
of So, the compactification of the "interior" of the state-space, and of So, the compactified
"terminal boundary," as two separate components. More precisely let S denote the corn-
pact metric space which consists of the two isolated subsets So := E x Y and Sa R".
Note that So is the same space which was denoted by S in §2.

Every con.imiuoi, function - E C(§) will then correspond to the pair 1iso E C.!Su)
and Is, E C-,(Sa) where C.y(So) is C..(S) of §2 and

C-,(So) := E6 E C(R"): sup I¢(x)ll-y(T,x) < 0

and

lir I(x) / (T, x) = 0).

LC.(S) will denote the set of all lower semi-continuous functions on S, i.e. those which can
be represented as upper envelopes of families of C.(S) functions. The dual space to C,(S)
will be the set ,(S) of all pairs of measures Al' = (AlMo,MAf) with AMo E Mt(So),Ma ,
M"(Sa) provided with the norm IIMl., = f y(t', x')IMo(dt', dx', dy)l + f -y(T, x)IMa(dx).
The set of all non-negative measures Afl C M±(S) with IMil. < r < +oc will be denoted
b-. Mj(s).

Observe that the function

(7, ,y) if 0 = (r,C,Y) E So
:= L(x) if a = X E Sa

is in LC,(S). The measure M"u defined on the Borel sets B of S by

M (B) of (2.1) if B C So
u(B):= (

"P "(x EB) ifB C Sa

is in .k 4 '+T(. ) C ,4(S). With this notation the (strong) optimal control problemn with
both running and terminal costs can be formulated as follows
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Minimize J df'~ over all U E U. _

Let C.'(f) denote the set of all twice continuously differentiable functions -1 defined .
[0, T) x R" for wNhich , . are all in C.,(E)(i,j' = 1,2,... ,n). The diff(-cc
to the definition of C2 (E) in §2 is that now we do not require functions to vanish Oil h

extboundary rT x R' for T < oc. Recall that for evr 1 E C 2 (E) Dykin's formula

E V((T,aT -(tx) = E'., jA" -(s,x,) ds(S3

holds true. If we introduce the operator , G(E) C'. (S) by

-A Nf A(t. x) if o = (t, x, y) E So

then with the above notation Dynkin's formula can be written in the more compact form

-i(t )= 4A4 5f.(8.4)

The weak problem corresponding to (8.2) can be formulated as

Minmiz e JidM over all TjMMY,+T(S§)fnlMA(t, x)

with M'I(f. X) {M1 E M() for which (8.4) holds ViD E cY(k)}.
All the expositions of §§3-7 can be repeated word by word for this extended notation

and we obtain

THEOREM 5. The dual to the problem (8.2) is to find the supremumn of all smooth subso-
lutions of the Hamilton-Jacobi-Bellman equation, and we have

'I'(t. .x) = inf E"{jl(s, , uv) ds + L(XT)}

=sup{ P(t,x) overall 4EC,(E) satisfying

sinfAy-(7-, )+l(7, ,y) !O if 0<r <T, E R"'
YE Y

and PI'(T,) L(~ C- R
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